Courses

ELEC 501

Discrete and continuous random variables and processes, functions of random variables, independence of random variables. Central Limit Theorem. Discrete-time random processes, continuous-time random processes, stationary random processes, ergodicity, auto and cross correlation functions, power spectral density; spectral estimation, white noise processes, Markov chains.

GSSE - ELEC
Credit:3
Pre-requisite: ENGR. 200 or consent of the instructor

ELEC 506

Review of multi-dimensional sampling theory, aliasing, and quantization, fundamentals of color, human visual system, 2-D Block transforms, DFT, DCT and wavelets. Image filtering, edge detection, enhancement, and restoration. Basic video file formats, resolutions, and bit rates for various digital video applications. Motion analysis and estimation using 2D and 3D models. Motion-compensated filtering methods for noise removal, de-interlacing, and resolution enhancement. Digital image and video compression methods and standards, including JPEG/JPEG2000 and MPEG-1/2 and 4. Content-based image and video indexing and MPEG-7.

GSSE - ELEC
Credit:3

ELEC 511

Characterization of communication signals & systems, digital modulation schemes, optimum reception for the additive white Gaussian noise (AWGN) channel, signal design for band-limited channels, Nyquist criterion, intersymbol interference (ISI), optimum reception for channels with ISI and AWGN, linear equalization, decision feedback equalization, adaptive equalization, channel capacity & coding, linear block codes, convolutional codes, multichannel and multicarrier systems, spread spectrum signals for digital communications, multiuser communications. Design oriented exercises using computer aids.

GSSE - ELEC
Credit:3

ELEC 517

Issues in digital integrated circuit design. The devices. CMOS Inverter. Combinational logic gates in CMOS. Designing sequential logic circuits. Designing arithmetic building blocks. Timing issues in digital circuits. Memories and array structures. Design verification and testing. Design projects using computer aided design tools: SPICE, MAGIC, IRSIUM, OCTTOOLS. Project design requirements include architectural design, logic and timing verification, layout design, and test pattern generation. The resulting chips may be fabricated.

GSSE - ELEC
Credit:3
Pre-requisite: ELEC. 311 or consent of the instructor

ELEC 522

Introduction to Microsystems, MEMS and its integration with optics; Microfabrication and process integration; MEMS Modeling and design; Actuator and sensor design; Mechanical structure design; Optical system design basics; Packaging; Optical MEMS application case studies; Scanning systems (Retinal Scanning Displays, Barcode scanners); Projection display systems (DMD and GLV); Infrared imaging cameras; Optical switching for telecommunications.

GSSE - ELEC
Credit:3

ELEC 505

Linear Algebra Review, Normal Matrices, Quadratic Forms and Semidefinite Matrices, Inner Product and Norm Spaces, State Space Descriptions for Continuous and Discrete Time Systems, Controllability, Observability, Stability, Realization Theory.

GSSE - ELEC
Credit:3

ELEC 510

Entropy, Relative Entropy and Mutual Information; Asymptotic Equipartition Theory; Entropy Rates of a Stochastic Process; Data Compression; Kolmogorov Complexity; Channel Capacity; Differential Entropy; The Gaussian Channel; Maximum Entropy and Spectral Estimation; Rate Distortion Theory, Network Information Theory.

GSSE - ELEC
Credit:3

ELEC 514

The cellular concept, channel assignment strategies, frequency reuse, handoff strategies, interference sources, mobile radio propagation, large-scale path loss, small-scale fading and multipath, modulation techniques for mobile radio, diversity combining, transmit and receive antennas for wireless communication systems, multiple access techniques in wireless, wireless system design for delay intolerant services, wireless system design for delay tolerant services, error correction coding and ARQ schemes, wireless networking, wireless systems & standards: GSM, IS-95, cdma2000, W-CDMA, 3GPP2 1xEV-DO, 3GPP2 1xEV-DV, fourth generation wireless system proposals. Design oriented exercises using computer aids.

GSSE - ELEC
Credit:3

ELEC 521

Review of electromagnetism; geometrical optics, analysis of optical systems; wave properties of light, Gaussian beams, beam optics; interaction of light with matter, spontaneous and stimulated emission, optical amplification, theory and applications of lasers, optical interactions in semiconductors, light emitting diodes and diode lasers; detectors, noise in detection systems; light propagation in anisotropic crystals, Pockels and Kerr effect, light modulators; nonlinear optics, second harmonic generation, phase matching, nonlinear optical materials.

GSSE - ELEC
Credit:3

ELEC 524

Introduction to optical fiber communication systems. Transmission properties of optical fibers. Optical amplifiers. Lasers and photo-detectors. Analog and digital modulation schemes. Modulator, transmitter and receiver design. Dense and ultra-dense wavelength division multiplexing. Transmission impairments, noise, nonlinearities, dispersion compensation and management, modeling and simulation. Optical fiber communication networks, optical interconnect for high-speed VLSI.

GSSE - ELEC
Credit:3
Pre-requisite: (ELEC. 206 and ELEC. 316) or consent of the instructor

ELEC 504

Sound and human speech systems, phonetics and phonology, speech signal representations, role of pitch and formants, pitch-scale and time-scale modifications, basics of speech coding and VoIP systems, fundamentals of pattern and speech recognition, search algorithms for speech recognition.

GSSE - ELEC
Credit:3
Pre-requisite: ELEC. 201 or consent of the instructor

ELEC 508

Study of computational models of visual perception and their implementation in computer systems. Topics include: image formation; edge, corner and boundary extraction, segmentation, matching, pattern recognition and classification techniques; 3-D Vision: projection geometry, camera calibration, shape from stereo/silhouette/shading, model-based 3D object recognition; color texture, radiometry and BDRF; motion analysis.

GSSE - ELEC
Credit:3

ELEC 512

Adaptive Filtering, LMS, RLS and Fast Algorithms, Array Signal Processing, Blind Algorithms & Subspace Methods for Channel Identification and Equalization, Convex Optimization and Its Applications, Multirate Signal Processing and Filter Banks.

GSSE - ELEC
Credit:3
Pre-requisite: ELEC. 505 or consent of the instructor

ELEC 518

Introduction to mathematical formulations and computational techniques for the modeling and simulation of engineering and other kinds of systems, including electronic, mechanical, biological, biochemical, virtual, abstract and multi-domain dynamical systems. Applications from various engineering disciplines and the sciences. Matrix formulation of equations for linear problems. Formulation of equations for nonlinear problems & linearization. Numerical solution of linear algebraic equations. Gaussian elimination, computations with sparse & structured matrices. Floating point number representation & arithmetic. Numerical conditioning, ill-conditioned problems. Numerical solution of nonlinear algebraic equations. Fixed point iteration & Newton’s method in one dimension. Newton’s method for system of coupled nonlinear algebraic equations. Improving convergence of Newton’s method. Numerical solution of ordinary differential equations. Forward & backward Euler, trapezoidal rule. Multistep methods, accuracy & stability. Implicit vs explicit techniques, region of stability, stiff problems.

GSSE - ELEC
Credit:3

ELEC 523

Review of 2-D linear system theory and 2-D Fourier transforms. Integral transforms used in optical signal processing; Fundamentals of physical optics and diffraction theory; Fourier and imaging properties of optical systems; Coherent and Incoherent optical image processing; Fundamental architectures for correlation and spectrum analysis; Interferometry; Discrete analog optical processors; Holography; Review of 3D Display technologies.

GSSE - ELEC
Credit:3
Pre-requisite: (ELEC. 201 and ELEC. 429) or consent of the instructor