Courses

CHBI 506

The principles and computational methods to study the biological data generated by genome sequencing, gene expressions, protein profiles, and metabolic fluxes. Application of arithmetic, algebraic, graph, pattern matching, sorting and searching algorithms and statistical tools to genome analysis. Applications of Bioinformatics to metabolic engineering, drug design, and biotechnology.

GSSE - COMP
Credit:3

COMP 508

Study of computational models of visual perception and their implementation in computer systems. Topics include: image formation; edge, corner and boundary extraction, segmentation, matching, pattern recognition and classification techniques; 3-D Vision: projection geometry, camera calibration, shape from stereo/silhouette/shading, model-based 3D object recognition; color texture, radiometry and BDRF; motion analysis.

GSSE - COMP
Credit:3

COMP 515

Introduction to distributed computing, overview of operating systems, process synchronization and deadlocks, threads and thread synchronization, communication protocols, synchronization in distributed systems, management of time, causality, logical clocks, consistent global states, distributed mutual exclusion, distributed deadlock detection, election algorithms, agreement protocols, consensus, multicast communication, distributed transactions, replication, shared memory model, scheduling, distributed file systems, fault tolerance in distributed systems, distributed real-time systems.

GSSE - COMP
Credit:3
Pre-requisite: COMP. 304 or consent of the instructor

COMP 532

Review of multimedia (image, video and audio) source coding/compression techniques and standards (JPEG, MPEG, H26x); Review of communication and networking architectures and IP networks; QoS, delay, jitter, rate control, scheduling, and traffic engineering for real-time multimedia delivery; Reliability, error control, error concealment and resilience techniques; Streaming media and real-time communication techniques and protocols, RTP/RTCP, IntServ, DiffServ, MPLS; Transmission of multimedia over Internet, wireless channels, mobile cellular networks, GSM, 3G, 4G wireless systems, and satellite networks; Current and future applications of multimedia communications, e.g., voice-over-IP (VoIP), Internet Video conferencing, SIP, IMS, video-on-demand, digital video broadcasting systems, real-time delivery of 3DTV; Current state-of-the-art and future visions in multimedia communications research.

GSSE - COMP
Credit:3
Pre-requisite: ELEC. 406 or consent of the instructor

COMP 541

Basic linear models for classification and regression; stochastic gradient descent (backpropagation) learning; multi-layer perceptrons, convolutional neural networks, and recurrent neural networks; recent advances in the field; practical examples from machine translation, computer vision; practical experience in programming, training, evaluating and benchmarking deep learning models.

GSSE - COMP
Credit:3

COMP 506

Review of multi-dimensional sampling theory, aliasing, and quantization, fundamentals of color, human visual system, 2-D Block transforms, DFT, DCT and wavelets. Image filtering, edge detection, enhancement, and restoration. Basic video file formats, resolutions, and bit rates for various digital video applications. Motion analysis and estimation using 2D and 3D models. Motion-compensated filtering methods for noise removal, de-interlacing, and resolution enhancement. Digital image and video compression methods and standards, including JPEG/JPEG2000 and MPEG-1/2 and 4. Content-based image and video indexing and MPEG-7.

GSSE - COMP
Credit:3
Pre-requisite: ELEC. 303 or consent of the instructor

COMP 513

Entropy, Relative Entropy and Mutual Information; Asymptotic Equipartition Theory; Entropy Rates of a Stochastic Process; Data Compression; Kolmogorov Complexity; Channel Capacity; Differential Entropy; The Gaussian Channel; Maximum Entropy and Spectral Estimation; Rate Distortion Theory, Network Information Theory.

GSSE - COMP
Credit:3

COMP 529

Fundamental concepts of concurrency, non-determinism, atomicity, race-conditions, synchronization, mutual exclusion. Overview of parallel architectures, multicores, distributed memory. Parallel programming models and languages, multithreaded, message passing, data driven, and data parallel programming. Design of parallel programs, decomposition, granularity, locality, communication, load balancing. Patterns for parallel programming, structural, computational, algorithm strategy, concurrent execution patterns. Performance modeling of parallel programs, sources of parallel overheads.

GSSE - COMP
Credit:3

COMP 537

Applications of artificial intelligence in user interfaces. Design, implementation, and evaluation of user interfaces that use machine learning, computer vision and pattern recognition technologies. Supporting tools for classification, regression, multi-modal information fusion. Gaze-tracking, gesture recognition, object detection, tracking, haptic devices, speech-based and pen-based interfaces.

GSSE - COMP
Credit:3
Pre-requisite: (COMP. 130 or COMP. 131) or consent of the instructor

COMP 543

Introduction to cryptographic concepts. Symmetric encryption, the public-key breakthrough, one-way functions, hash functions, random numbers, digital signatures, zero-knowledge proofs, modern cryptographic protocols, multi-party computation. Everyday use examples including online commerce, BitTorrent peer-to-peer file sharing, and hacking some old encryption schemes.

GSSE - COMP
Credit:3
Pre-requisite: COMP. 106 or consent of the instructor

COMP 504

Sound and human speech systems, phonetics and phonology, speech signal representations, role of pitch and formants, pitch-scale and time-scale modifications, basics of speech coding and VoIP systems, fundamentals of pattern and speech recognition, search algorithms for speech recognition.

GSSE - COMP
Credit:3
Pre-requisite: ELEC. 201 or consent of the instructor

COMP 510

Theory and practice of 3D computer graphics. Topics covered include graphics systems and models; geometric representations and transformations; graphics programming; input and interaction; viewing and projections; compositing and blending; illumination and color models; shading; texture mapping; animation; rendering and implementation; hierarchical and object-oriented modeling; scene graphs; 3D reconstruction and modeling.

GSSE - COMP
Credit:3
Pre-requisite: COMP. 202 or consent of the instructor

COMP 528

Next generation communication systems, wireless cellular networks, machine-to-machine communications, Internet of things, software defined networking, physical layer data transmission, channel propagation characteristics, modulation, demodulation, medium access control layer, data link layer, forward and backward error control, routing layer, optimal routing, transport layer, flow control, congestion control.

GSSE - COMP
Credit:3

COMP 534

Overview of Computer Security Techniques, Conventional Encryption, Public-Key Cryptography, Key Management, Message Authentication, Hash Functions and Algorithms, Digital Signatures, Authentication Protocols, Access Control Mechanisms, Network Security Practice, TCP/IP Security, Web Security, SSL (Secure Socket Layer), Denial-of-Service Attacks, Intrusion Detection, Viruses.

GSSE - COMP
Credit:3

COMP 542

Fundamental concepts and current research in natural language processing. Algorithms for processing linguistic information. Computational properties of human languages. Analysis at the level of morphology, syntax, and semantics. Modern quantitative techniques of using large corpora, statistical models, and machine learning applied to problems of acquisition, disambiguation and parsing. Applications such as machine translation and question answering.

GSSE - COMP
Credit:3