Courses

CHBI 410

Key aspects of microbial physiology; exploring the versatility of microorganisms and their diverse metabolic activities and products; industrial microorganisms and the technology required for large-scale cultivation.

GSSE - MBGE
Credit:3
Pre-requisite: CHBI. 300 or consent of the instructor

CHBI 516

Recombinant DNA, enzymes and other biomolecules. Molecular genetics. Commercial use of microorganisms. Cellular reactors; bioseparation techniques. Transgenic systems. Gene therapy. Biotechnology applications in environmental, agricultural and pharmaceutical problems.

GSSE - MBGE
Credit:3

ENGL 500

The following objectives will be met through extensive reading, writing and discussion both in and out of class.Build a solid background in academic discourse, both written and spoken. Improve intensive and extensive critical reading skills. Foster critical and creative thinking. Build fundamental academic writing skills including summary, paraphrase, analysis, synthesis. Master cohesiveness as well as proper academic citation when incorporating the work of others.

GSSE - MBGE
Credit:0

MBGE 404

Molecular details of the innate and adaptive immune systems. Subject areas will include immune recognition, immunosuppression, communication between different immune system cell types, and autoimmunity.

GSSE - MBGE
Credit:3
Pre-requisite: MBGE. 204 or consent of the instructor

MBGE 408

Proteomics and function, fundamentals of mass spectrometry (MS), tandem MS, chemical and posttranslational modifications, protein identification, data mining, protein complexes, protein folding, MS genotyping, high throughput; recently developed proteomics methods and their applications; focus on the recent scientific literature in this field including quantitative comparison of healthy and disease proteomes, the comprehensive analysis of protein-protein interactions in different cell types, and new approaches to analyze cellular signaling pathways and the subcellular-organelle and cell surface proteomes.

GSSE - MBGE
Credit:3
Pre-requisite: MBGE. 204 or consent of the instructor

CHBI 510

Key aspects of microbial physiology; exploring the versatility of microorganisms and their diverse metabolic activities and products; industrial microorganisms and the technology required for large-scale cultivation.

GSSE - MBGE
Credit:3

CMSE 520

Relationship between structure, function and dynamics in biomolecules. Overview of the biomolecular databases and application of computational methods to understand molecular interactions; networks. Principles of computational modeling and molecular dynamics of biological systems.

GSSE - MBGE
Credit:3
Pre-requisite: CMSE. 501 or consent of the instructor

MBGE 403

How do cells generate, store, and use the energy that they require? This course will cover in great depth the processes of oxidative phosphorylation, glycolysis, and photosynthesis. In addition, energy acquisition by chemotrophic organisms will be discussed.

GSSE - MBGE
Credit:3
Pre-requisite: MBGE. 204 or consent of the instructor

MBGE 407

This course covers the cell and molecular biology of pathogenic organisms, such as malaria, trypanosomes, toxoplasma, and parasitic yeast. Topics will include organism life cycles, host invasion strategies, methods of immune system evasion, and the evolution of parasites.

GSSE - MBGE
Credit:3
Pre-requisite: MBGE. 301 or consent of the instructor

MBGE 412

Fundamental aspects of the molecular and cellular biology of tumor formation and cancer cells. Topics include cell cycle, oncogenes, tumor suppressor genes, the tumor's interaction with other cells and tissues, approaches to treating cancer, and novel experimental approaches for the discovery of mutations that contribute to tumorigenesis.

GSSE - MBGE
Credit:3
Pre-requisite: MBGE. 204 or consent of the instructor

CHBI 506

The principles and computational methods to study the biological data generated by genome sequencing, gene expressions, protein profiles, and metabolic fluxes. Application of arithmetic, algebraic, graph, pattern matching, sorting and searching algorithms and statistical tools to genome analysis. Applications of Bioinformatics to metabolic engineering, drug design, and biotechnology.

GSSE - MBGE
Credit:3

CHBI 584

The fundamentals of tissue engineering at the molecular and cellular level; techniques in tissue engineering; problems and solution in tissue engineering; transplantation of tissues in biomedicine using sophisticated equipments and materials; investigation of methods for the preparation of component of cell, effect of growth factors on tissues.

GSSE - MBGE
Credit:3

MASE 542

Materials for biomedical applications; synthetic polymers, metals and composite materials as biomaterials; biopolymers, dendrimers, hydrogels, polyelectrolytes, drug delivery systems, implants, tissue grafts, dental materials, ophthalmic materials, surgical materials, imaging materials.

GSSE - MBGE
Credit:3

MBGE 405

The key areas of RNA biology, structure and function; splicing, polyadenylation, transport, translation and decay of mRNAs; the regulatory mechanisms governed by noncoding RNAs such as siRNAs, miRNAs and long noncoding RNAs.

GSSE - MBGE
Credit:3
Pre-requisite: MBGE. 301 or consent of the instructor

MBGE 410

Cells have elaborate mechanisms for controlling cell proliferation and differentiation. In this course, we will explore in molecular detail the intricate signaling pathways that are important for cell behavior, with a major focus on those pathways that are conserved widely among many species.

GSSE - MBGE
Credit:3
Pre-requisite: MBGE. 204 or consent of the instructor